skip to main content


Search for: All records

Creators/Authors contains: "Cheng, Hsin-Pai"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 1, 2024
  2. Resource is an important constraint when deploying Deep Neural Networks (DNNs) on mobile and edge devices. Existing works commonly adopt the cell-based search approach, which limits the flexibility of network patterns in learned cell structures. Moreover, due to the topology-agnostic nature of existing works, including both cell-based and node-based approaches, the search process is time consuming and the performance of found architecture may be sub-optimal. To address these problems, we propose AutoShrink, a topology-aware Neural Architecture Search (NAS) for searching efficient building blocks of neural architectures. Our method is node-based and thus can learn flexible network patterns in cell structures within a topological search space. Directed Acyclic Graphs (DAGs) are used to abstract DNN architectures and progressively optimize the cell structure through edge shrinking. As the search space intrinsically reduces as the edges are progressively shrunk, AutoShrink explores more flexible search space with even less search time. We evaluate AutoShrink on image classification and language tasks by crafting ShrinkCNN and ShrinkRNN models. ShrinkCNN is able to achieve up to 48% parameter reduction and save 34% Multiply-Accumulates (MACs) on ImageNet-1K with comparable accuracy of state-of-the-art (SOTA) models. Specifically, both ShrinkCNN and ShrinkRNN are crafted within 1.5 GPU hours, which is 7.2× and 6.7× faster than the crafting time of SOTA CNN and RNN models, respectively. 
    more » « less
  3. Resource is an important constraint when deploying Deep Neural Networks (DNNs) on mobile and edge devices. Existing works commonly adopt the cell-based search approach, which limits the flexibility of network patterns in learned cell structures. Moreover, due to the topology-agnostic nature of existing works, including both cell-based and node-based approaches, the search process is time consuming and the performance of found architecture may be sub-optimal. To address these problems, we propose AutoShrink, a topologyaware Neural Architecture Search (NAS) for searching efficient building blocks of neural architectures. Our method is node-based and thus can learn flexible network patterns in cell structures within a topological search space. Directed Acyclic Graphs (DAGs) are used to abstract DNN architectures and progressively optimize the cell structure through edge shrinking. As the search space intrinsically reduces as the edges are progressively shrunk, AutoShrink explores more flexible search space with even less search time. We evaluate AutoShrink on image classification and language tasks by crafting ShrinkCNN and ShrinkRNN models. ShrinkCNN is able to achieve up to 48% parameter reduction and save 34% Multiply-Accumulates (MACs) on ImageNet-1K with comparable accuracy of state-of-the-art (SOTA) models. Specifically, both ShrinkCNN and ShrinkRNN are crafted within 1.5 GPU hours, which is 7.2× and 6.7× faster than the crafting time of SOTA CNN and RNN models, respectively. 
    more » « less
  4. The prosperity of Internet of Things (IoT) calls for efficient ways of designing extremely compact yet accu- rate DNN models. Both the cell-based neural architec- ture search methods and the recently proposed graph based methods fall short in finding high quality IoT models due to the search flexibility, accuracy density, and node depen- dency limitations. In this paper, we propose a new graph- based neural architecture search methodology MSNAS for crafting highly compact yet accurate models for IoT de- vices. MSNAS supports flexible search space and can ac- cumulate learned knowledge in a meta-graph to increase accuracy density. By adopting structural wiring architec- ture, MSNAS reduces the dependency between nodes, which allows more compact models without sacrificing accuracy. The preliminary experimental results on IoT applications demonstrate that the MSNet crafted by MSNAS outperforms MobileNetV2 and MnasNet by 3.0% in accuracy, with 20% less peak memory consumption and similar Multi-Adds. 
    more » « less
  5. In recent years, neuromorphic computing systems (NCS) have gained popularity in accelerating neural network computation because of their high energy efficiency. The known vulnerability of neural networks to adversarial attack, however, raises a severe security concern of NCS. In addition, there are certain application scenarios in which users have limited access to the NCS. In such scenarios, defense technologies that require changing the training methods of the NCS, e.g., adversarial training become impracticable. In this work, we propose AdverQuil – an efficient adversarial detection and alleviation technique for black-box NCS. AdverQuil can identify the adversarial strength of input examples and select the best strategy for NCS to respond to the attack, without changing structure/parameter of the original neural network or its training method. Experimental results show that on MNIST and CIFAR-10 datasets, AdverQuil achieves a high efficiency of 79.5 - 167K image/sec/watt. AdverQuil introduces less than 25% of hardware overhead, and can be combined with various adversarial alleviation techniques to provide a flexible trade-off between hardware cost, energy efficiency and classification accuracy. 
    more » « less
  6. In distributed machine learning, while a great deal of attention has been paid on centralized systems that include a central parameter server, decentralized systems have not been fully explored. Decentralized systems have great potentials in the future practical use as they have multiple useful attributes such as less vulnerable to privacy and security issues, better scalability, and less prone to single point of bottleneck and failure. In this paper, we focus on decentralized learning systems and aim to achieve differential privacy with good convergence rate and low communication cost. To achieve this goal, we propose a new algorithm, Leader-Follower Elastic Averaging Stochastic Gradient Descent (LEASGD), driven by a novel Leader-Follower topology and differential privacy model. We also provide a theoretical analysis of the convergence rate of LEASGD and the trade-off between the performance and privacy in the private setting. We evaluate LEASGD in real distributed testbed with poplar deep neural network models MNIST-CNN, MNIST-RNN, and CIFAR-10. Extensive experimental results show that LEASGD outperforms state-of-the-art decentralized learning algorithm DPSGD by achieving nearly 40% lower loss function within same iterations and by 30% reduction of communication cost. Moreover, it spends less differential privacy budget and has final higher accuracy result than DPSGD under private setting. 
    more » « less